

Stay Connected!

Download the "GEAPS Exchange" app for schedule, maps and surveys.

Share on Social! #GEAPSExchange

Wifi Network: GEAPS2022 Password: Exchange92

Thank you to our Education Program Sponsors!

Brad Droegmiller

Dodge Industrial

Senior Territory Manager

Agenda

How to Select a Bearing

- Bearing Types
- Shaft Attachments
- Sealing Systems

How to Maintain Bearings

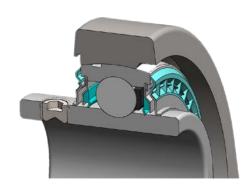
- Lubrication
- Best Practices
- -Troubleshooting
- -Monitoring

How to Guard Bearings & Shafts

- At Risk Areas
- -Guard Designs

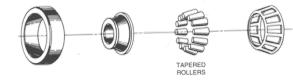
Conclusion

- Questions

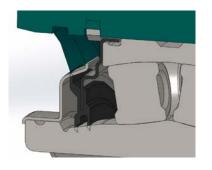


How to select the proper bearing.




Typical bearing classifications used in the grain industry

Bearings classified by their rolling element



Ball Bearings

Tapered Roller Bearings

Spherical Roller Bearings

Selection Factors

Load & Speed

- Operating Speed
- L10 Life (Equivalent Radial Load)
- Minimum Load
- Axial Load Limits
- Shaft Size

Environment

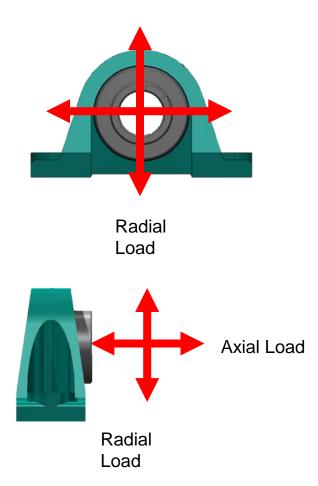
- Wet/Dry Contamination
- Chemical Exposure
- High/Low Temperature
- Seal Options/End Covers

System Mechanics

- Static/Dynamic Misalignment
- Shaft Expansion
- Vibration
- Eccentric Loading

Load Types

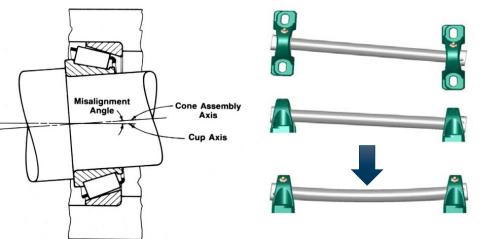
Radial


Applies force perpendicular to the shaft

Axial (Thrust)

Applies force parallel to the shaft

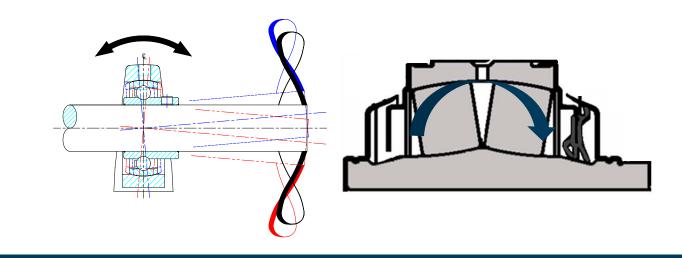
Bearing Loads can be created by:


- Weight
- Belt Tension
- Fan Pressure
- Any linear or rotational load on the shaft

Types of Misalignment

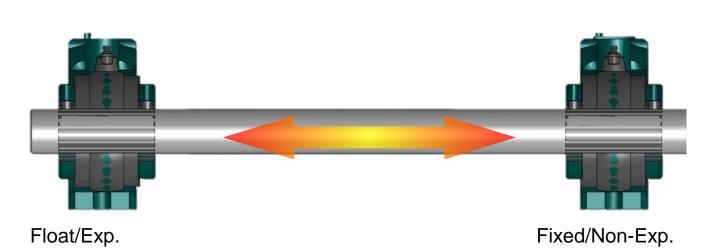
Static Misalignment

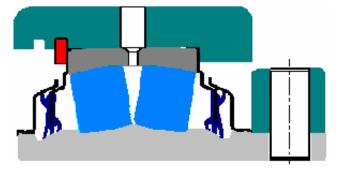
Direction of Misalignment stays constant

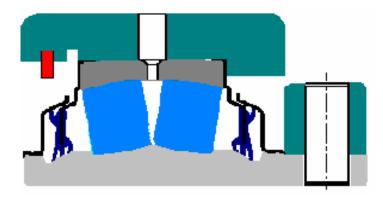

Axis not co-linear

Supports not in same plane

Deflection


Dynamic Misalignment


Direction of Misalignment changes as shaft spins


Expansion of Shafting

- Expansion bearing moves with shaft and prevents axial load
- Must always have fixed bearing
- Typically, fixed bearing on drive end
- Steel mounting surface will expand with shaft

Non-expansion (fixed)

Expansion (float)

Why Bearings Fail – How to Select, Maintain & Properly Guard Bearings General Bearing Comparisons

	<u>Ball</u>	<u>Tapered</u>	<u>Spherical</u>	
Speeds	High	Med (~70% of B.B. Speeds)	Med – High	
Typical Load Capacity	1X	3X	3.5X	
Radial Loads	Low	Med – High	High	
Thrust Loads	Low - Med	Med	Low – Med $(F_r > F_a)$	
Static Misalignment	+/- 2° (Insert Relative to Housing)	Insert Relative to Housing	+/- 2° (Less with Seal Considerations)	
Dynamic Misalignment	None	None	+/- 2°	
Temperature Range	-40°F to 220°F (High temp available to 400°C)			
Expansion Capability	Select PB Only	Yes, Except Type E	Yes	
Mounting Methods	Setscrew, Eccentric, D-Lok, Adapter	Setscrew, Clamp Collar, Adapter	Setscrew, Adapter, Direc	
Shaft Size Range	17mm – 85mm	35mm – 180mm (up to 300mm special)	35mm – 140mm (up to 630mm special)	
Roller Shape	Ball	Tapered (Conical)	Spherical (Crowned Barrel)	
Raceway Contact Shape	Point •	Line	Elliptical —	
Dadiell and O	45/40" D-U 0 005 LD	Toward 44 400 LD	Only and a 1.40.750 L	

Comparison Radial Load 2 15/16"

Ball 3,325 LB

Tapered 11,120 LB

Spherical 10,759 LB

Ball Bearing

Characteristics:

- Light-Medium Loads
- Low-High Speeds
- Pure Radial Load
- Pure Thrust Load
- Combination Loads
- No Minimum Load
- Static Misalignment

Tapered Roller Bearing

Characteristics:

- Medium-Heavy Loads
- Low-High Speeds
- Pure Radial Load
- Pure Thrust Load
- Combination Loads
- No Minimum Load
- Static Misalignment

Spherical Roller Bearing

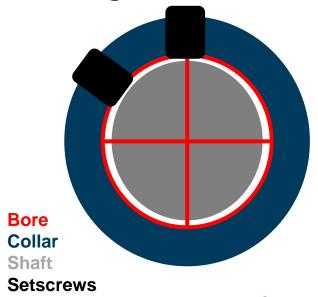
Characteristics:

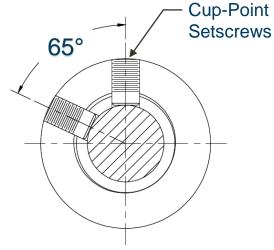
- Medium-Heavy Loads
- Low-High Speeds
- Radial ≥ Axial
- Static/Dynamic Misalignment

Set Screws

Advantages

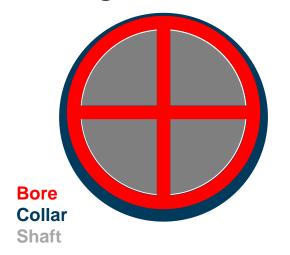
- Highest Holding Power
- Simple Installation

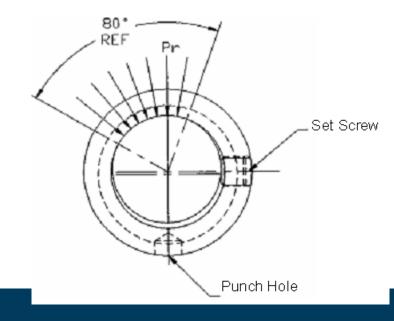

Disadvantages


- Lower Speed Capacity
- Damages Shaft Surface
- Eccentric Hold (Creates Vibration)
- Tight Shaft Tolerances
- Difficult to Remove (Fretting)

Eccentric Collar

Advantages


Simple Installation


Disadvantages

- Lowest Holding Power
- Lower Speed Capacity
- Unidirectional rotation only
- Eccentric Hold (Creates Vibration)
- Tight Shaft Tolerances
- Difficult to Remove (Fretting)

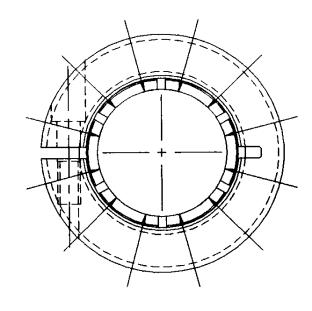
Concentric Collar

Advantages

- Simple Installation
- Minimal Shaft Damage
- Concentric Hold (Less Vibration)
- Higher Speed Capacity
- Moderate Holding Power

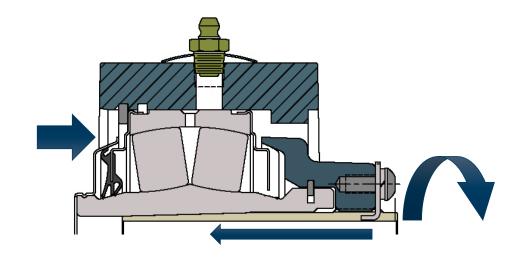
Disadvantages

- Difficult to Remove (Fretting)
- Tight Shaft Tolerances



Bore Tabs

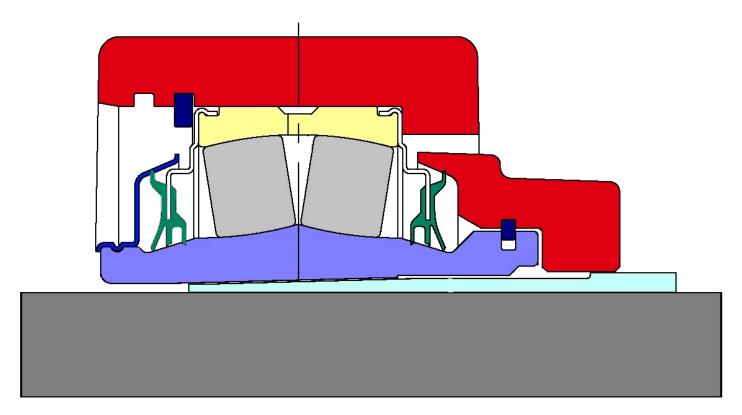
Shaft


Adapter Sleeve

Advantages

- Moderate Holding Power
- Highest Speed Capacity
- No Shaft Damage
- Concentric Hold (Least Vibration)
- Stock Shafting Tolerances
- Easily Removed

Disadvantages


- More Complex Installation
- Weight must be removed from shaft during installation

How the Imperial Adapter Works

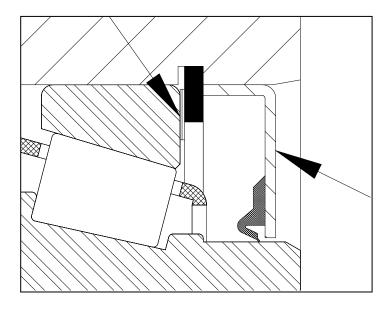
- Weight must be removed from shaft to avoid preloading
- Use spanner wrench or drift and hammer to apply final rotations from instruction manual
- Locknut is tightened by hand to zero reference point – no clearance is left between shaft, sleeve, and tapered bore inner ring

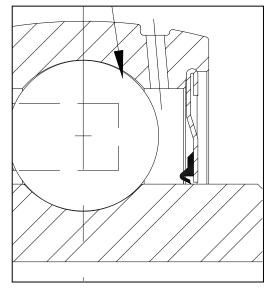
Shaft Attachment Comparison

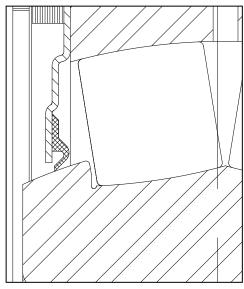
Category	Setscrew	Eccentric Collar	Concentric Collar	Adapter
Holding Power				
Speed Capacity				
Vibration				
Ease of Installation				
Ease of Removal				
Damage to Shaft				
Shaft Tolerances				
	= Best	= Moderate	= Worst	

Sealing Systems

	Labyrinth	Single Lip Felt	Single Lip	Triple Lip	Combination
High speed	***	**	***	**	**
Water resistance	*	*	**	***	***
Solid contamination	*	***	**	***	***
		Cuido: **** - bos	* - woret		


Guide: **** = best * = worst

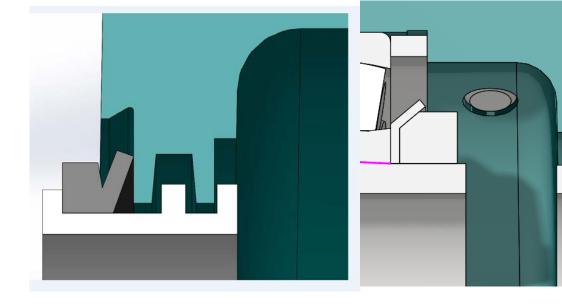

Best Practice: Seal material and quantity of lips can impact performance. Combination seals provide best protection.

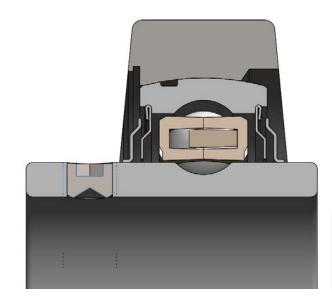


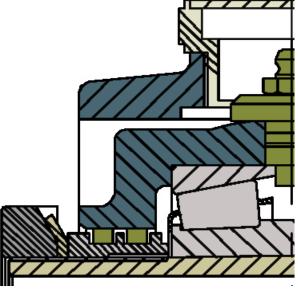
Contact Seals

- Makes direct contact
- Most common type
- Rubber Lip forms one-way valve
- Moderate Speeds
- Moderate Temperatures
- Harsh Environments

Clearance Seals

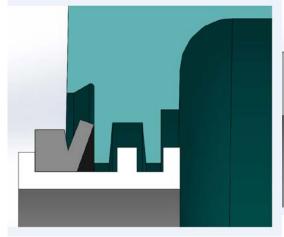

Obstructs particle entry with

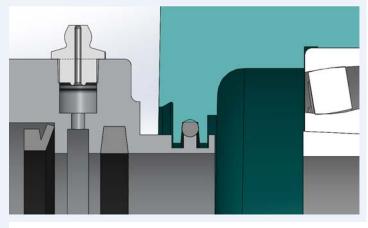

- Labyrinth maze
- Grease dam

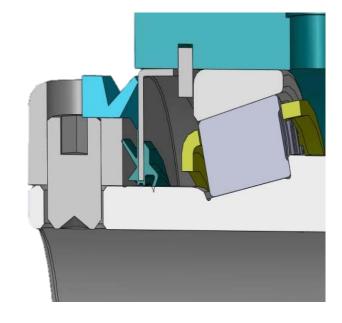

Higher Speeds

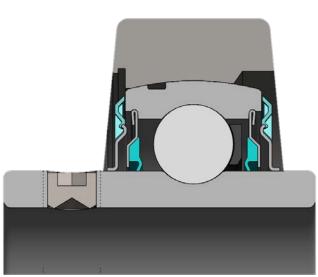
Higher Temperature

Low Drag







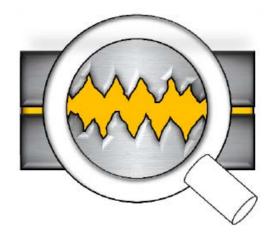

Combination Seals

- Combines Contact Seals with Labyrinth and Grease Dam
- Most effective sealing
- Moderate Speeds
- Moderate Temperatures
- Washdown and Dusty Environments

How to maintain bearings.

Purpose of Lubrication

1. Reduces Friction

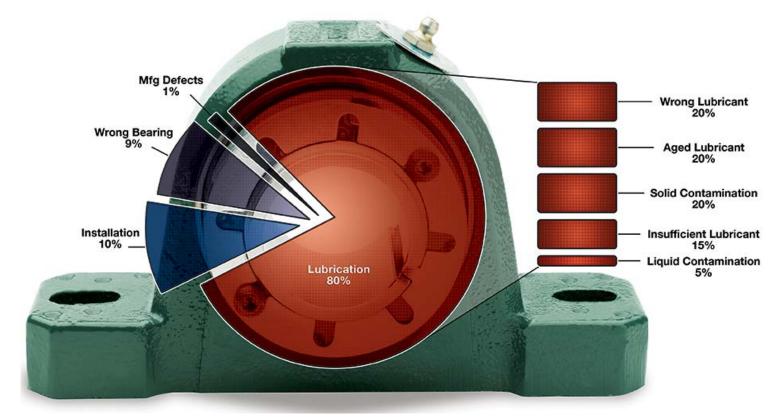

- Separates mating surfaces
- Prevents metal-on-metal contact
- Reduces wear and heat

2. Protects Against Contamination

- Grease "dam" forms in seals
- Circulating oil continuously cleans

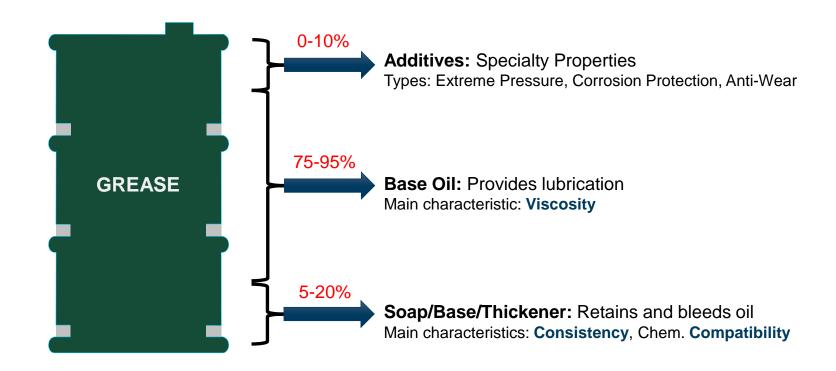
3. *Removes Excess Heat

- Circulating oil with heat exchanger
- *For SAF and Sleevoil bearings



Why is Lubrication Important?

About 80% of all bearing failures are due to lubrication


Main contributors:

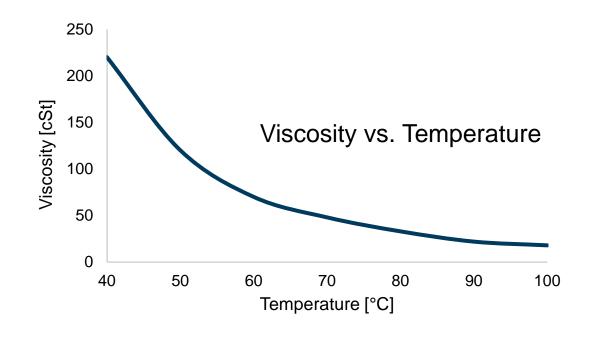
- Wrong Lubricant (20%)
- Aged Lubricant (20%)
- Insufficient Lubrication (15%)
- Solid Contamination (20%)
- Liquid Contamination (5%)

What is Grease?

Grease Consistency

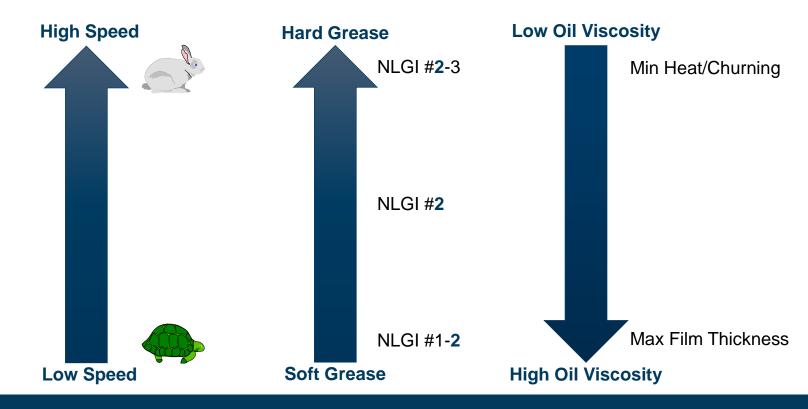
Consistency – Hardness of soap

Specified by NLGI number (National Lubrication Grease Institute)


NLGI#	Comparison	Structure	Applications	
000	Ketchup			
00	Applesauce	Fluid Greases	Central Lubrication Systems Gear Lubrication	
0	Brown Mustard			
1	Tomato Paste			
2	Peanut Butter	Soft Greases	Bearings	
3	Vegetable Shortening		Pumps	
4	Frozen Yogurt			
5	Canned Meat	Hard Greases	Sealing greases Block greases	
6	Cheese		J 3	

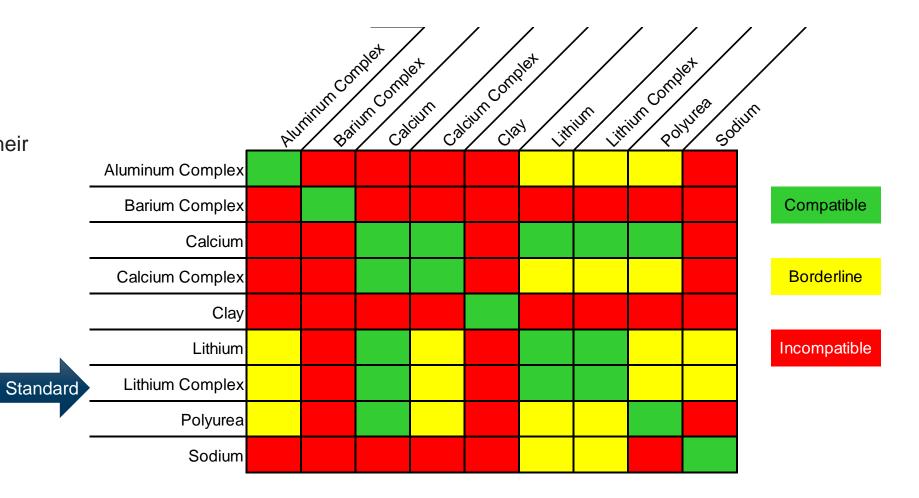
Oil Viscosity Selection

Viscosity – Resistance to flow


Viscosity usually rated at 40 °C and 100 °C

Speed Consideration

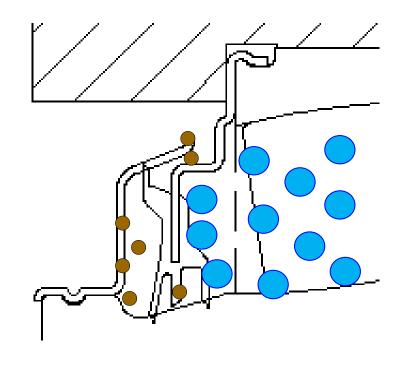
Bearing speed is primary factor for lubricant selection



Grease Compatibility

 Wrong lubrication causes incompatible greases to lose their effectiveness

• NLGI = 2



Purging Grease

Why purge grease?

- Replaces and pushes old grease out
- Pushes contaminants out and/or away from the bearing
- Provides fresh grease to rollers and raceways
- Recharges grease dams
- If you're not purging, you're only diluting the contaminants

Build-up of Material

- Keep parts clear of build-up material
- Purgeable seals create a grease dam
- Dust, dirt, conveyed material acts as an insulator
- Bearing housings are designed to dissipate heat

Grease Lubrication Frequency

Lubrication Guide								
Suggested Lubrication Period in Weeks								
Hours		251 to	501 to	751 to	1001 to	1501 to	2001 to	2501 to
Run Per	1 to 250	500	750	1000	1500	2000	2500	3000
Day	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM
8	12	12	10	7	5	4	3	2
16	12	7	5	4	2	2	2	1
24	10	5	3	2	1	1	1	1

Times to lubricate:

Before shutdown

After washdown

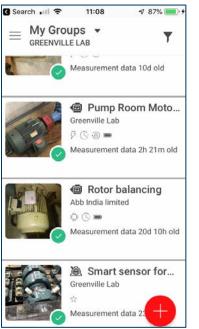
- If safe, lubricate with bearing spinning
- If seasonal, purge at shut down and prior to start up
- "Bench Purge" new bearings prior to installation

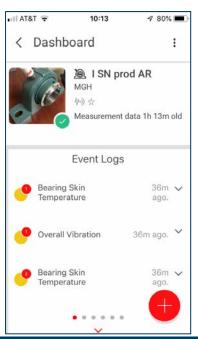
Rule of Thumb: Amount = 3 shots per inch of shaft diameter

Why Bearings Fail – How to Select, Maintain & Properly Guard Bearings Recognize a problem before it comes an emergency

Sensor technology-hands off monitoring of equipment

- Sensors have been around for years
- Variety of manufactures
- Wide range of costs
- Connectivity ranges from wired to wireless
- Features and abilities typically include temperature monitoring

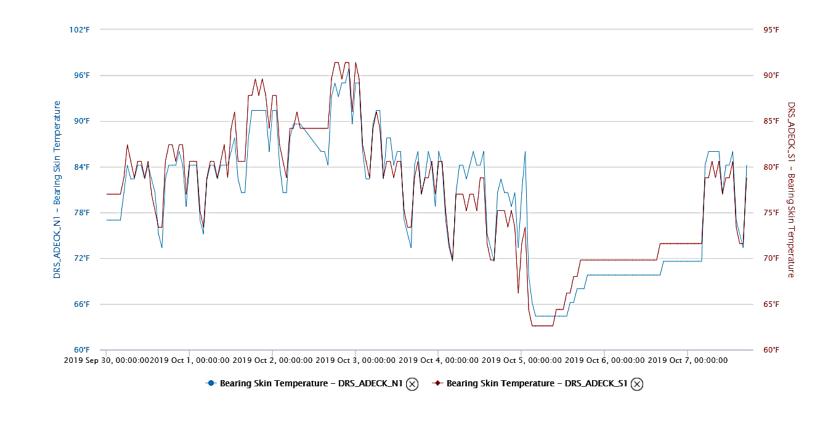




Wireless sensor for mechanical products

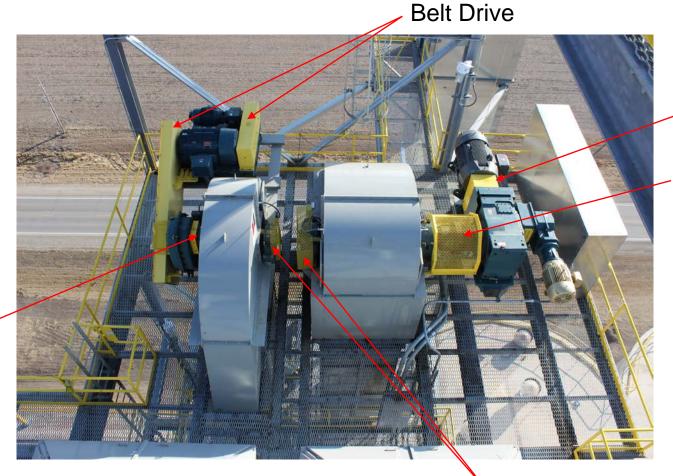
Condition monitoring, mobile app or web portal

- Provides an easy overview of the status of the assets and organization
- Easy access for users on the move
- Specific asset, "Trend at a Glance"



Wireless sensor for mechanical products

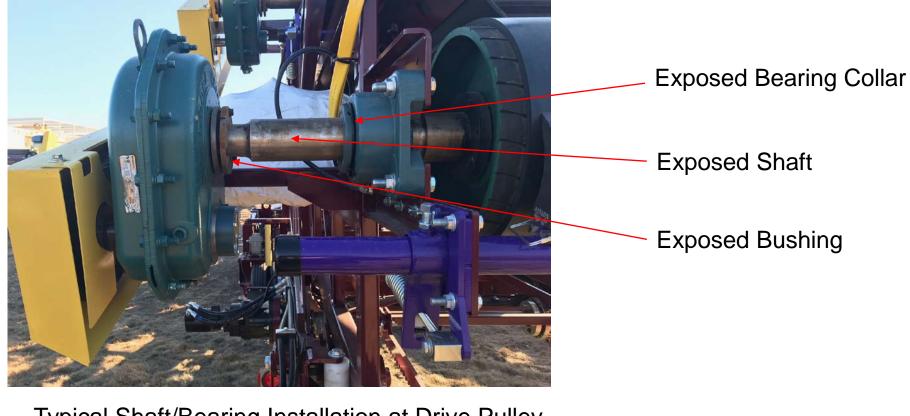
- Condition monitoring, powertrain portal
- Monitor multiple products at once
- Powertrain portal
- Allows to visibility of multiple assets at once.
- Example to the right shows temperature data from two bearings over a selected time period



Why Bearings Fail – How to Select, Maintain & Properly Guard Bearings How to guard bearings.

At Risk Areas to Guard

High Speed Coupling


Low Speed Coupling & Bearing

Bearing & Shaft at Reducer Output

Bearing & Shaft

At Risk Areas to Guard

Typical Shaft/Bearing Installation at Drive Pulley

Guarding Solutions

Both Bushings Guarded

Exposed Shaft & Bearing Collar Guarded

Fine Length Adjustment

Segmented for Cut-To-Size Adjustment

Bearing Covers Closed End Cover Open End Cover Closed End Housing

Thank You!

For more information visit me at Booth 832

Why Bearings Fail – How to Select, Maintain & Properly Guard Bearings Uptime Calculation

Proper Selection +

Proper Installation +

Proper Maintenance

Proper Safety

= More Uptime

We want your feedback! Download the "GEAPS Exchange" app to take the session survey.

Share on Social! #GEAPSExchange

Wifi Network: GEAPS2022 Password: Exchange92

